Schilcher, U.,  Toumpis, S., Borkotoky, S., Schmidt, J., Bettstetter, C., “Calculating the traffic density in LPWANs with finite retransmissions,” in Proc. IEEE Vehicular Technology Conf. (VTC), Singapore, June 2024

Rathi, S., Schmidt, J., Schilcher, U., Borkotoky, S., “Energy-aware relaying in dense LoRa networks with heterogeneous batteries,”,” IEEE Networking Letters, 6(1): 41–45, 2024.



Sonnberger M., Merz R., Schmidt J., “Testing the limits of 5G communication with articulated robots in various traffic conditions," in Proc. IEEE Conf. on Standards for Commun. and Networking, Munich, Germany, November 2023.

Luckeneder, C., Hoch, R., Kaindl, H., " Towards Using Structural Abstraction for Model Checking", Proceedings of the 10th International Conference on Dependable Systems and Their Applications (DSA 2023), August 2023

Stippel, C., Schwendinger, B., Kammerhofer, M., Hoch, R. Kaindl, H., Sauter, T., "Towards Optimized Schedules for Charging Electric Vehicles on Austrian Highways using Genetic Algorithms", GECCO '23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, Juli 2023

Schmidt, J., Schilcher, U., Vogell, A., Bettstetter, C., "Using Randomization in Self-Organized Synchronization for Wireless Networks", ACM Transactions on Autonomous and Adaptive Systems, Juni 2023

Sparr, K., Steurer, P., Drexel, D., Hoch, R., "Using Digital Twins in Learning Factories for Simulation and Optimization", Proceedings of the 13th Conference on Learning Factories (CLF 2023), Juni 2023



Drexel, D., Hoch, R., "Three-faceted manufacturing knowledge representation in cloud environments", 10th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2022, Nantes, 22. - 24. Juni 2022

Merz, R., Hoch, R., Drexel, D., "Flexibilisierung von Lieferketten", nachhaltige technologien, AEE intec, Ausgabe 01, 2022, S. 15-17



Drexel, D., "Automatically linking concepts in distributed, cloud-based manufacturing environments", Proceedings of the 15th International Rule Challenge, 7th Industry Track, and 5th Doctoral Consortium @RuleML+RR 2021. Leuven, Belgium (virtual due to Covid-19 pandemic), 8. - 15. September 2021

Sparr, K., Drexel, D., Hoch, R., "Using an Auction-Based System in Cloud Manufacturing for Selecting Manufacturing-as-a-Service Providers", in: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 634. Springer, August 2021



Merz, R., Hoch, R., Drexel, D., "A Cloud-Based Research and Learning Factory for Industrial Productions", 10th Conference on Learning Factories, CLF2020, Procedia Manufacturing Vol. 45 (2020) 215–221



Plankensteiner, K., "Zuverlässigkeitsanalyse von Schweißprozessen mit Supervised Learning Methoden", in: Werth, W., "Machine Learning und Data Science in der Mechatronik", Tagungsband, FH Kärnten, Campus Villach, 21. November 2019



Poulain, B., Plankensteiner, K., Rigger, E., Schöch, R., Merz, R., "Concept of probabilistic modeling for real-time prediction of product quality and design automation", Efficiency, Flexibility, Integration, Wiener Produktionstechnik Kongress 2018, WPK 2018, 26. - 27. September 2018

Malin, S., Plankensteiner, K., Merz, R., Mayr, R., Schöndorfer, S., Thomas, M., "Smart recommendation system to simplify projecting for an HMI/SCADA platform", Data Science – Analytics and Applications, Proceedings of the 2nd International Data Science Conference – iDSC2019, Springer, 2019

Zumtobel, M., Plankensteiner, K., "Using supervised learning to predict the reliability of a welding process",  Data Science – Analytics and Applications, Proceedings of the 2nd International Data Science Conference – iDSC2019, Springer, 2019